|YryX with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for
Emory University
Math 221
Linear Algebra
Sections 1 \& 2
Lectured and adapted by
Le Chen
April 15, 2021
le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson

Contents

1 Systems of Linear Equations 5
1.1 Solutions and Elementary Operations 6
1.2 Gaussian Elimination 16
1.3 Homogeneous Equations 28
Supplementary Exercises for Chapter 1 37
2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition 40
2.2 Matrix-Vector Multiplication 53
2.3 Matrix Multiplication 72
2.4 Matrix Inverses 91
2.5 Elementary Matrices 109
2.6 Linear Transformations 119
2.7 LU-Factorization 135
3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion 148
3.2 Determinants and Matrix Inverses 163
3.3 Diagonalization and Eigenvalues 178
Supplementary Exercises for Chapter 3 201
4 Vector Geometry 203
4.1 Vectors and Lines 204
4.2 Projections and Planes 223
4.3 More on the Cross Product 244
4.4 Linear Operators on \mathbb{R}^{3} 251
Supplementary Exercises for Chapter 4 260
5 Vector Space \mathbb{R}^{n} 263
5.1 Subspaces and Spanning 264
5.2 Independence and Dimension 273
5.3 Orthogonality 287
5.4 Rank of a Matrix 297
5.5 Similarity and Diagonalization 307
Supplementary Exercises for Chapter 5 320
6 Vector Spaces 321
6.1 Examples and Basic Properties 322
6.2 Subspaces and Spanning Sets 333
6.3 Linear Independence and Dimension 342
6.4 Finite Dimensional Spaces 354
Supplementary Exercises for Chapter 6 364
7 Linear Transformations 365
7.1 Examples and Elementary Properties 366
7.2 Kernel and Image of a Linear Transformation 374
7.3 Isomorphisms and Composition 385
8 Orthogonality 399
8.1 Orthogonal Complements and Projections 400
8.2 Orthogonal Diagonalization 410
8.3 Positive Definite Matrices 421
8.4 QR-Factorization 427
8.5 Computing Eigenvalues 431
8.6 The Singular Value Decomposition 436
8.6.1 Singular Value Decompositions 436
8.6.2 Fundamental Subspaces 442
8.6.3 The Polar Decomposition of a Real Square Matrix 445
8.6.4 The Pseudoinverse of a Matrix 447

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set \mathbb{R}^{n} of all n-tuples (called vectors), and began our investigation of the matrix transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by matrix multiplication by an $m \times n$ matrix. Particular attention was paid to the euclidean plane \mathbb{R}^{2} where certain simple geometric transformations were seen to be matrix transformations. Then in Section 2.6 we introduced linear transformations, showed that they are all matrix transformations, and found the matrices of rotations and reflections in \mathbb{R}^{2}. We returned to this in Section 4.4 where we showed that projections, reflections, and rotations of \mathbb{R}^{2} and \mathbb{R}^{3} were all linear, and where we related areas and volumes to determinants.

In this chapter we investigate \mathbb{R}^{n} in full generality, and introduce some of the most important concepts and methods in linear algebra. The n-tuples in \mathbb{R}^{n} will continue to be denoted \mathbf{x}, \mathbf{y}, and so on, and will be written as rows or columns depending on the context.

Subspaces of \mathbb{R}^{n}

Definition 5.1 Subspace of \mathbb{R}^{n}

A set $t^{1} U$ of vectors in \mathbb{R}^{n} is called a subspace of \mathbb{R}^{n} if it satisfies the following properties:
S1. The zero vector $\boldsymbol{0} \in U$.
S2. If $\boldsymbol{x} \in U$ and $\boldsymbol{y} \in U$, then $\boldsymbol{x}+\boldsymbol{y} \in U$.
S3. If $\mathbf{x} \in U$, then $a \mathbf{x} \in U$ for every real number a.

We say that the subset U is closed under addition if S 2 holds, and that U is closed under scalar multiplication if S3 holds.

Clearly \mathbb{R}^{n} is a subspace of itself, and this chapter is about these subspaces and their properties. The set $U=\{\mathbf{0}\}$, consisting of only the zero vector, is also a subspace because $\mathbf{0}+\mathbf{0}=\mathbf{0}$ and $a \mathbf{0}=\mathbf{0}$ for each a in \mathbb{R}; it is called the zero subspace. Any subspace of \mathbb{R}^{n} other than $\{\mathbf{0}\}$ or \mathbb{R}^{n} is called a proper subspace.

We saw in Section 4.2 that every plane M through the origin in
 \mathbb{R}^{3} has equation $a x+b y+c z=0$ where a, b, and c are not all zero.

$$
\begin{array}{r}
\text { Here } \mathbf{n}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { is a normal for the plane and } \\
\qquad M=\left\{\mathbf{v} \text { in } \mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{v}=0\right\}
\end{array}
$$

[^0]where $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathbf{n} \cdot \mathbf{v}$ denotes the dot product introduced in Section 2.2 (see the diagram). ${ }^{2}$ Then M is a subspace of \mathbb{R}^{3}. Indeed we show that M satisfies $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 as follows:

S1. $\mathbf{0} \in M$ because $\mathbf{n} \cdot \mathbf{0}=0$;
S2. If $\mathbf{v} \in M$ and $\mathbf{v}_{1} \in M$, then $\mathbf{n} \cdot\left(\mathbf{v}+\mathbf{v}_{1}\right)=\mathbf{n} \cdot \mathbf{v}+\mathbf{n} \cdot \mathbf{v}_{1}=0+0=0$, so $\mathbf{v}+\mathbf{v}_{1} \in M$;
S3. If $\mathbf{v} \in M$, then $\mathbf{n} \cdot(a \mathbf{v})=a(\mathbf{n} \cdot \mathbf{v})=a(0)=0$, so $a \mathbf{v} \in M$.

This proves the first part of

Example 5.1.1

Planes and lines through the origin in \mathbb{R}^{3} are all subspaces of \mathbb{R}^{3}.

Solution. We dealt with planes above. If L is a line through the origin with direction vector \mathbf{d}, then $L=\{t \mathbf{d} \mid t \in \mathbb{R}\}$ (see the diagram). We leave it as an exercise to verify that L

Example 5.1.1 shows that lines through the origin in \mathbb{R}^{2} are subspaces; in fact, they are the only proper subspaces of \mathbb{R}^{2} (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and planes through the origin in \mathbb{R}^{3} are the only proper subspaces of \mathbb{R}^{3}. Thus the geometry of lines and planes through the origin is captured by the subspace concept. (Note that every line or plane is just a translation of one of these.)

Subspaces can also be used to describe important features of an $m \times n$ matrix A. The null space of A, denoted null A, and the image space of A, denoted im A, are defined by

$$
\text { null } A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \quad \text { and } \quad \operatorname{im} A=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

In the language of Chapter 2, null A consists of all solutions \mathbf{x} in \mathbb{R}^{n} of the homogeneous system $A \mathbf{x}=\mathbf{0}$, and $\operatorname{im} A$ is the set of all vectors \mathbf{y} in \mathbb{R}^{m} such that $A \mathbf{x}=\mathbf{y}$ has a solution \mathbf{x}. Note that \mathbf{x} is in null A if it satisfies the condition $A \mathbf{x}=\mathbf{0}$, while $\operatorname{im} A$ consists of vectors of the form $A \mathbf{x}$ for some x in \mathbb{R}^{n}. These two ways to describe subsets occur frequently.

[^1]
Example 5.1.2

If A is an $m \times n$ matrix, then:

1. null A is a subspace of \mathbb{R}^{n}.
2. im A is a subspace of \mathbb{R}^{m}.

Solution.

1. The zero vector $\mathbf{0} \in \mathbb{R}^{n}$ lies in null A because $A \mathbf{0}=\mathbf{0} .{ }^{3}$ If \mathbf{x} and \mathbf{x}_{1} are in null A, then $\mathrm{x}+\mathrm{x}_{1}$ and $a \mathrm{x}$ are in null A because they satisfy the required condition:

$$
A\left(\mathrm{x}+\mathrm{x}_{1}\right)=A \mathrm{x}+A \mathrm{x}_{1}=\mathbf{0}+\mathbf{0}=\mathbf{0} \quad \text { and } \quad A(a \mathbf{x})=a(A \mathbf{x})=a \mathbf{0}=\mathbf{0}
$$

Hence null A satisfies $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 , and so is a subspace of \mathbb{R}^{n}.
2. The zero vector $\mathbf{0} \in \mathbb{R}^{m}$ lies in im A because $\mathbf{0}=A \mathbf{0}$. Suppose that \mathbf{y} and \mathbf{y}_{1} are in $\operatorname{im} A$, say $\mathbf{y}=A \mathbf{x}$ and $\mathbf{y}_{1}=A \mathbf{x}_{1}$ where \mathbf{x} and \mathbf{x}_{1} are in \mathbb{R}^{n}. Then

$$
\mathbf{y}+\mathbf{y}_{1}=A \mathbf{x}+A \mathbf{x}_{1}=A\left(\mathbf{x}+\mathbf{x}_{1}\right) \quad \text { and } \quad a \mathbf{y}=a(A \mathbf{x})=A(a \mathbf{x})
$$

show that $\mathbf{y}+\mathbf{y}_{1}$ and $a \mathbf{y}$ are both in im A (they have the required form). Hence im A is a subspace of \mathbb{R}^{m}.

There are other important subspaces associated with a matrix A that clarify basic properties of A. If A is an $n \times n$ matrix and λ is any number, let

$$
E_{\lambda}(A)=\left\{\mathrm{x} \in \mathbb{R}^{n} \mid A \mathrm{x}=\lambda \mathrm{x}\right\}
$$

A vector \mathbf{x} is in $E_{\lambda}(A)$ if and only if $(\lambda I-A) \mathbf{x}=\mathbf{0}$, so Example 5.1 .2 gives:

Example 5.1.3

$E_{\lambda}(A)=\operatorname{null}(\lambda I-A)$ is a subspace of \mathbb{R}^{n} for each $n \times n$ matrix A and number λ.
$E_{\lambda}(A)$ is called the eigenspace of A corresponding to λ. The reason for the name is that, in the terminology of Section 3.3, λ is an eigenvalue of A if $E_{\lambda}(A) \neq\{0\}$. In this case the nonzero vectors in $E_{\lambda}(A)$ are called the eigenvectors of A corresponding to λ.

The reader should not get the impression that every subset of \mathbb{R}^{n} is a subspace. For example:

$$
\begin{aligned}
& U_{1}=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, x \geq 0\right\} \text { satisfies S1 and S2, but not S3; } \\
& U_{2}=\left\{\left.\left[\begin{array}{l}
x \\
y
\end{array}\right] \right\rvert\, x^{2}=y^{2}\right\} \text { satisfies S1 and S3, but not S2; }
\end{aligned}
$$

Hence neither U_{1} nor U_{2} is a subspace of \mathbb{R}^{2}. (However, see Exercise 5.1.20.)

[^2]
Spanning Sets

Let \mathbf{v} and \mathbf{w} be two nonzero, nonparallel vectors in \mathbb{R}^{3} with their tails at the origin. The plane M through the origin containing these vectors is described in Section 4.2 by saying that $\mathbf{n}=\mathbf{v} \times \mathbf{w}$ is a normal for M, and that M consists of all vectors \mathbf{p} such that $\mathbf{n} \cdot \mathbf{p}=0 .{ }^{4}$ While this is a very useful way to look at planes, there is another approach that is at least as useful in \mathbb{R}^{3} and, more importantly, works for all subspaces of \mathbb{R}^{n} for any $n \geq 1$.

The idea is as follows: Observe that, by the diagram, a vector \mathbf{p}
 is in M if and only if it has the form

$$
\mathbf{p}=a \mathbf{v}+b \mathbf{w}
$$

for certain real numbers a and b (we say that \mathbf{p} is a linear combination of \mathbf{v} and \mathbf{w}). Hence we can describe M as

$$
M=\{a \mathbf{x}+b \mathbf{w} \mid a, b \in \mathbb{R}\} .^{5}
$$

and we say that $\{\mathbf{v}, \mathbf{w}\}$ is a spanning set for M. It is this notion of a spanning set that provides a way to describe all subspaces of \mathbb{R}^{n}.

As in Section 1.3, given vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ in \mathbb{R}^{n}, a vector of the form

$$
t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k} \quad \text { where the } t_{i} \text { are scalars }
$$

is called a linear combination of the \mathbf{x}_{i}, and t_{i} is called the coefficient of \mathbf{x}_{i} in the linear combination.

Definition 5.2 Linear Combinations and Span in \mathbb{R}^{n}

The set of all such linear combinations is called the span of the \mathbf{x}_{i} and is denoted

$$
\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}=\left\{t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k} \mid t_{i} \text { in } \mathbb{R}\right\}
$$

If $V=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$, we say that V is spanned by the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$, and that the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ span the space V.

Here are two examples:

$$
\operatorname{span}\{\mathbf{x}\}=\{t \mathbf{x} \mid t \in \mathbb{R}\}
$$

which we write as $\operatorname{span}\{\mathbf{x}\}=\mathbb{R} \mathbf{x}$ for simplicity.

$$
\operatorname{span}\{\mathbf{x}, \mathbf{y}\}=\{r \mathbf{x}+s \mathbf{y} \mid r, s \in \mathbb{R}\}
$$

In particular, the above discussion shows that, if \mathbf{v} and \mathbf{w} are two nonzero, nonparallel vectors in \mathbb{R}^{3}, then

$$
M=\operatorname{span}\{\mathbf{v}, \mathbf{w}\}
$$

[^3]is the plane in \mathbb{R}^{3} containing \mathbf{v} and \mathbf{w}. Moreover, if \mathbf{d} is any nonzero vector in \mathbb{R}^{3} (or \mathbb{R}^{2}), then
$$
L=\operatorname{span}\{\mathbf{v}\}=\{t \mathbf{d} \mid t \in \mathbb{R}\}=\mathbb{R} \mathbf{d}
$$
is the line with direction vector \mathbf{d}. Hence lines and planes can both be described in terms of spanning sets.

Example 5.1.4

Let $\mathbf{x}=(2,-1,2,1)$ and $\mathbf{y}=(3,4,-1,1)$ in \mathbb{R}^{4}. Determine whether $\mathbf{p}=(0,-11,8,1)$ or $\mathbf{q}=(2,3,1,2)$ are in $U=\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$.

Solution. The vector \mathbf{p} is in U if and only if $\mathbf{p}=s \mathbf{x}+t \mathbf{y}$ for scalars s and t. Equating components gives equations

$$
2 s+3 t=0, \quad-s+4 t=-11, \quad 2 s-t=8, \quad \text { and } \quad s+t=1
$$

This linear system has solution $s=3$ and $t=-2$, so \mathbf{p} is in U. On the other hand, asking that $\mathbf{q}=s \mathbf{x}+t \mathbf{y}$ leads to equations

$$
2 s+3 t=2, \quad-s+4 t=3, \quad 2 s-t=1, \quad \text { and } \quad s+t=2
$$

and this system has no solution. So \mathbf{q} does not lie in U.

Theorem 5.1.1: Span Theorem

Let $U=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ in \mathbb{R}^{n}. Then:

1. U is a subspace of \mathbb{R}^{n} containing each \mathbf{x}_{i}.
2. If W is a subspace of \mathbb{R}^{n} and each $\boldsymbol{x}_{i} \in W$, then $U \subseteq W$.

Proof.

1. The zero vector $\mathbf{0}$ is in U because $\mathbf{0}=0 \mathbf{x}_{1}+0 \mathbf{x}_{2}+\cdots+0 \mathbf{x}_{k}$ is a linear combination of the \mathbf{x}_{i}. If $\mathbf{x}=t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}$ and $\mathbf{y}=s_{1} \mathbf{x}_{1}+s_{2} \mathbf{x}_{2}+\cdots+s_{k} \mathbf{x}_{k}$ are in U, then $\mathbf{x}+\mathbf{y}$ and $a \mathbf{x}$ are in U because

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =\left(t_{1}+s_{1}\right) \mathbf{x}_{1}+\left(t_{2}+s_{2}\right) \mathbf{x}_{2}+\cdots+\left(t_{k}+s_{k}\right) \mathbf{x}_{k}, \text { and } \\
a \mathbf{x} & =\left(a t_{1}\right) \mathbf{x}_{1}+\left(a t_{2}\right) \mathbf{x}_{2}+\cdots+\left(a t_{k}\right) \mathbf{x}_{k}
\end{aligned}
$$

Finally each \mathbf{x}_{i} is in U (for example, $\mathbf{x}_{2}=0 \mathbf{x}_{1}+1 \mathbf{x}_{2}+\cdots+0 \mathbf{x}_{k}$) so S1, S2, and S3 are satisfied for U, proving (1).
2. Let $\mathbf{x}=t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}$ where the t_{i} are scalars and each $\mathbf{x}_{i} \in W$. Then each $t_{i} \mathbf{x}_{i} \in W$ because W satisfies $S 3$. But then $\mathbf{x} \in W$ because W satisfies $S 2$ (verify). This proves (2).
Condition (2) in Theorem 5.1 .1 can be expressed by saying that $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ is the smallest subspace of \mathbb{R}^{n} that contains each \mathbf{x}_{i}. This is useful for showing that two subspaces U and W are equal, since this amounts to showing that both $U \subseteq W$ and $W \subseteq U$. Here is an example of how it is used.

Example 5.1.5

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, show that $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}=\operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\}$.
Solution. Since both $\mathbf{x}+\mathbf{y}$ and $\mathbf{x}-\mathbf{y}$ are in $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$, Theorem 5.1.1 gives

$$
\operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\} \subseteq \operatorname{span}\{\mathbf{x}, \mathbf{y}\}
$$

But $\mathbf{x}=\frac{1}{2}(\mathbf{x}+\mathbf{y})+\frac{1}{2}(\mathbf{x}-\mathbf{y})$ and $\mathbf{y}=\frac{1}{2}(\mathbf{x}+\mathbf{y})-\frac{1}{2}(\mathbf{x}-\mathbf{y})$ are both in $\operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\}$, so

$$
\operatorname{span}\{\mathbf{x}, \mathbf{y}\} \subseteq \operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\}
$$

again by Theorem 5.1.1. Thus $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}=\operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{x}-\mathbf{y}\}$, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here are three examples, beginning with an important spanning set for \mathbb{R}^{n} itself. Column j of the $n \times n$ identity matrix I_{n} is denoted \mathbf{e}_{j} and called the j th coordinate vector in \mathbb{R}^{n}, and the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is called the standard basis of \mathbb{R}^{n}. If $\mathbf{x}=\left[\begin{array}{r}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is any vector in \mathbb{R}^{n}, then $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$, as the reader can verify. This proves:

Example 5.1.6

$\mathbb{R}^{n}=\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the columns of I_{n}.

If A is an $m \times n$ matrix A, the next two examples show that it is a routine matter to find spanning sets for null A and $\operatorname{im} A$.

Example 5.1.7

Given an $m \times n$ matrix A, let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ denote the basic solutions to the system $A \mathbf{x}=\mathbf{0}$ given by the gaussian algorithm. Then

$$
\operatorname{null} A=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}
$$

Solution. If $\mathbf{x} \in$ null A, then $A \mathbf{x}=\mathbf{0}$ so Theorem 1.3.2 shows that \mathbf{x} is a linear combination of the basic solutions; that is, null $A \subseteq \operatorname{span}\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\}$. On the other hand, if \mathbf{x} is in $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$, then $\mathbf{x}=t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\cdots+t_{k} \mathbf{x}_{k}$ for scalars t_{i}, so

$$
A \mathbf{x}=t_{1} A \mathbf{x}_{1}+t_{2} A \mathbf{x}_{2}+\cdots+t_{k} A \mathbf{x}_{k}=t_{1} \mathbf{0}+t_{2} \mathbf{0}+\cdots+t_{k} \mathbf{0}=\mathbf{0}
$$

This shows that $\mathbf{x} \in$ null A, and hence that $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\} \subseteq$ null A. Thus we have equality.

Example 5.1.8

Let $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ denote the columns of the $m \times n$ matrix A. Then

$$
\operatorname{im} A=\operatorname{span}\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}
$$

Solution. If $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is the standard basis of \mathbb{R}^{n}, observe that

$$
\left[\begin{array}{llll}
A \mathbf{e}_{1} & A \mathbf{e}_{2} & \cdots & A \mathbf{e}_{n}
\end{array}\right]=A\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}
\end{array}\right]=A I_{n}=A=\left[\begin{array}{lll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots \\
\mathbf{c}_{n}
\end{array}\right] .
$$

Hence $\mathbf{c}_{i}=A \mathbf{e}_{i}$ is in im A for each i, so span $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\} \subseteq \operatorname{im} A$.
Conversely, let \mathbf{y} be in im A, say $\mathbf{y}=A \mathbf{x}$ for some \mathbf{x} in \mathbb{R}^{n}. If $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$, then
Definition 2.5 gives

$$
\mathbf{y}=A \mathbf{x}=x_{1} \mathbf{c}_{1}+x_{2} \mathbf{c}_{2}+\cdots+x_{n} \mathbf{c}_{n} \text { is in span }\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}
$$

This shows that im $A \subseteq \operatorname{span}\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$, and the result follows.

Exercises for 5.1

We often write vectors in \mathbb{R}^{n} as rows.
Exercise 5.1.1 In each case determine whether U is a subspace of \mathbb{R}^{3}. Support your answer.
a. $U=\{(1, s, t) \mid s$ and t in $\mathbb{R}\}$.
b. $U=\{(0, s, t) \mid s$ and t in $\mathbb{R}\}$.
c. $U=\{(r, s, t) \mid r, s$, and t in \mathbb{R}, $-r+3 s+2 t=0\}$.
d. $U=\{(r, 3 s, r-2) \mid r$ and s in $\mathbb{R}\}$.
e. $U=\left\{(r, 0, s) \mid r^{2}+s^{2}=0, r\right.$ and s in $\left.\mathbb{R}\right\}$.
f. $U=\left\{\left(2 r,-s^{2}, t\right) \mid r, s\right.$, and t in $\left.\mathbb{R}\right\}$.
d. No
f. No.

Exercise 5.1.2 In each case determine if \mathbf{x} lies in $U=\operatorname{span}\{\mathbf{y}, \mathbf{z}\}$. If \mathbf{x} is in U, write it as a linear combination of \mathbf{y} and \mathbf{z}; if \mathbf{x} is not in U, show why not.
a. $\mathbf{x}=(2,-1,0,1), \mathbf{y}=(1,0,0,1)$, and $\mathrm{z}=(0,1,0,1)$.
b. $\mathbf{x}=(1,2,15,11), \mathbf{y}=(2,-1,0,2)$, and $\mathbf{z}=(1,-1,-3,1)$.
c. $\mathrm{x}=(8,3,-13,20), \mathrm{y}=(2,1,-3,5)$, and $\mathbf{z}=(-1,0,2,-3)$.
d. $\mathbf{x}=(2,5,8,3), \mathbf{y}=(2,-1,0,5)$, and $\mathbf{z}=(-1,2,2,-3)$.
b. Yes
b. No
d. Yes, $\mathbf{x}=3 \mathbf{y}+4 \mathbf{z}$.

Exercise 5.1.3 In each case determine if the given vectors span \mathbb{R}^{4}. Support your answer.
a. $\{(1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1)\}$
b. $\{(1,3,-5,0),(-2,1,0,0),(0,2,1,-1)$, $(1,-4,5,0)\}$.

b. No

Exercise 5.1.4 Is it possible that

 $\{(1,2,0),(2,0,3)\}$ can span the subspace $U=\{(r, s, 0) \mid r$ and s in $\mathbb{R}\}$? Defend your answer.Exercise 5.1.5 Give a spanning set for the zero subspace $\{\mathbf{0}\}$ of \mathbb{R}^{n}.

Exercise 5.1.6 Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ? Defend your answer.
Exercise 5.1.7 If $U=\operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ in \mathbb{R}^{n}, show that $U=\operatorname{span}\{\mathbf{x}+t \mathbf{z}, \mathbf{y}, \mathbf{z}\}$ for every t in \mathbb{R}.

Exercise 5.1.8 If $U=\operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ in \mathbb{R}^{n}, show that $U=\operatorname{span}\{\mathbf{x}+\mathbf{y}, \mathbf{y}+\mathbf{z}, \mathbf{z}+\mathbf{x}\}$.

Exercise 5.1.9 If $a \neq 0$ is a scalar, show that $\operatorname{span}\{a \mathbf{x}\}=\operatorname{span}\{\mathbf{x}\}$ for every vector \mathbf{x} in \mathbb{R}^{n}.
Exercise 5.1.10 If $a_{1}, a_{2}, \ldots, a_{k}$ are nonzero scalars, show that span $\left\{a_{1} \mathbf{x}_{1}, a_{2} \mathbf{x}_{2}, \ldots, a_{k} \mathbf{x}_{k}\right\}=$ $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ for any vectors \mathbf{x}_{i} in \mathbb{R}^{n}.
$\operatorname{span}\left\{a_{1} \mathbf{x}_{1}, a_{2} \mathbf{x}_{2}, \ldots, a_{k} \mathbf{x}_{k}\right\} \subseteq \operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ by Theorem 5.1.1 because, for each $i, a_{i} \mathbf{x}_{i}$ is in span $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$. Similarly, the fact that $\mathbf{x}_{i}=a_{i}^{-1}\left(a_{i} \mathbf{x}_{i}\right)$ is in $\operatorname{span}\left\{a_{1} \mathbf{x}_{1}, a_{2} \mathbf{x}_{2}, \ldots, a_{k} \mathbf{x}_{k}\right\}$ for each i shows that $\operatorname{span}\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\} \subseteq$ $\operatorname{span}\left\{a_{1} \mathbf{x}_{1}, \quad a_{2} \mathbf{x}_{2}, \ldots, a_{k} \mathbf{x}_{k}\right\}$, again by Theorem 5.1.1.

Exercise 5.1.11 If $\mathbf{x} \neq 0$ in \mathbb{R}^{n}, determine all subspaces of $\operatorname{span}\{\mathbf{x}\}$.

Exercise 5.1.12 Suppose that $U=$ $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$ where each \mathbf{x}_{i} is in \mathbb{R}^{n}. If A is an $m \times n$ matrix and $A \mathbf{x}_{i}=\mathbf{0}$ for each i, show that $A \mathbf{y}=\mathbf{0}$ for every vector \mathbf{y} in U. \qquad
If $\mathbf{y}=r_{1} \mathbf{x}_{1}+\cdots+r_{k} \mathbf{x}_{k}$ then $A \mathbf{y}=r_{1}\left(A \mathbf{x}_{1}\right)+\cdots+$ $r_{k}\left(A \mathbf{x}_{k}\right)=0$.

Exercise 5.1.13 If A is an $m \times n$ matrix, show that, for each invertible $m \times m$ matrix U, $\operatorname{null}(A)=$ null ($U A$).

Exercise 5.1.14 If A is an $m \times n$ matrix, show that, for each invertible $n \times n$ matrix $V, \operatorname{im}(A)=\operatorname{im}(A V)$.
Exercise 5.1.15 Let U be a subspace of \mathbb{R}^{n}, and let \mathbf{x} be a vector in \mathbb{R}^{n}.
a. If $a \mathrm{x}$ is in U where $a \neq 0$ is a number, show that x is in U.
b. If \mathbf{y} and $\mathbf{x}+\mathbf{y}$ are in U where \mathbf{y} is a vector in \mathbb{R}^{n}, show that \mathbf{x} is in U.
b. $\mathbf{x}=(\mathbf{x}+\mathbf{y})-\mathbf{y}=(\mathbf{x}+\mathbf{y})+(-\mathbf{y})$ is in U because U is a subspace and both $\mathbf{x}+\mathbf{y}$ and $-\mathbf{y}=(-1) \mathbf{y}$ are in U.

Exercise 5.1.16 In each case either show that the statement is true or give an example showing that it is false.
a. If $U \neq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} and $\mathbf{x}+\mathbf{y}$ is in U, then \mathbf{x} and \mathbf{y} are both in U.
b. If U is a subspace of \mathbb{R}^{n} and $r \mathrm{x}$ is in U for all r in \mathbb{R}, then \mathbf{x} is in U.
c. If U is a subspace of \mathbb{R}^{n} and \mathbf{x} is in U, then -x is also in U.
d. If \mathbf{x} is in U and $U=\operatorname{span}\{\mathbf{y}, \mathbf{z}\}$, then $U=$ $\operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$.
e. The empty set of vectors in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n}.
f. $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right\}$.
b. True. $\mathbf{x}=1 \mathrm{x}$ is in U.
d. True. Always $\operatorname{span}\{\mathbf{y}, \mathbf{z}\} \subseteq \operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ by Theorem 5.1.1. Since \mathbf{x} is in $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ we have $\operatorname{span}\{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \subseteq \operatorname{span}\{\mathbf{y}, \mathbf{z}\}$, again by Theorem 5.1.1.
f. False. $a\left[\begin{array}{l}1 \\ 0\end{array}\right]+b\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{c}a+2 b \\ 0\end{array}\right]$ cannot equal $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Exercise 5.1.17

a. If A and B are $m \times n$ matrices, show that $U=\left\{\mathbf{x}\right.$ in $\left.\mathbb{R}^{n} \mid A \mathbf{x}=B \mathbf{x}\right\}$ is a subspace of \mathbb{R}^{n}.
b. What if A is $m \times n, B$ is $k \times n$, and $m \neq k$?

Exercise 5.1.18 Suppose that $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ are vectors in \mathbb{R}^{n}. If $\mathbf{y}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k}$ where $a_{1} \neq 0$, show that $\operatorname{span}\left\{\mathrm{x}_{1} \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}\right\}=$ $\operatorname{span}\left\{\mathbf{y}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}$.

Exercise 5.1.19 If $U \neq\{\mathbf{0}\}$ is a subspace of \mathbb{R}, show that $U=\mathbb{R}$.

Exercise 5.1.20 Let U be a nonempty subset of \mathbb{R}^{n}. Show that U is a subspace if and only if S 2 and S3 hold.
If U is a subspace, then S 2 and S 3 certainly hold. Conversely, assume that S2 and S3 hold for U. Since U is nonempty, choose \mathbf{x} in U. Then $\mathbf{0}=0 \mathbf{x}$ is in U by S 3 , so S 1 also holds. This means that U is a subspace.

Exercise 5.1.21 If S and T are nonempty sets of vectors in \mathbb{R}^{n}, and if $S \subseteq T$, show that span $\{S\} \subseteq$ span $\{T\}$.

Exercise 5.1.22 Let U and W be subspaces of \mathbb{R}^{n}. Define their intersection $U \cap W$ and their sum $U+W$ as follows: $U \cap W=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\right.$ x belongs to both U and $W\} . \quad U+W=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\right.$ \mathbf{x} is a sum of a vector in U and a vector in $W\}$.
a. Show that $U \cap W$ is a subspace of \mathbb{R}^{n}.
b. Show that $U+W$ is a subspace of \mathbb{R}^{n}.
b. The zero vector $\mathbf{0}$ is in $U+W$ because $\mathbf{0}=$ $\mathbf{0}+\mathbf{0}$. Let \mathbf{p} and \mathbf{q} be vectors in $U+W$, say $\mathbf{p}=\mathbf{x}_{1}+\mathbf{y}_{1}$ and $\mathbf{q}=\mathbf{x}_{2}+\mathbf{y}_{2}$ where \mathbf{x}_{1} and \mathbf{x}_{2} are in U, and \mathbf{y}_{1} and \mathbf{y}_{2} are in W. Then $\mathbf{p}+\mathbf{q}=\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\left(\mathbf{y}_{1}+\mathbf{y}_{2}\right)$ is in $U+W$ because $\mathbf{x}_{1}+\mathbf{x}_{2}$ is in U and $\mathbf{y}_{1}+\mathbf{y}_{2}$ is in W. Similarly, $a(\mathbf{p}+\mathbf{q})=a \mathbf{p}+a \mathbf{q}$ is in $U+W$ for any scalar a because $a \mathbf{p}$ is in U and $a \mathbf{q}$ is in W. Hence $U+W$ is indeed a subspace of \mathbb{R}^{n}.

Exercise 5.1.23 Let P denote an invertible $n \times n$ matrix. If λ is a number, show that

$$
E_{\lambda}\left(P A P^{-1}\right)=\left\{P \mathbf{x} \mid \mathbf{x} \text { is in } E_{\lambda}(A)\right\}
$$

for each $n \times n$ matrix A.
Exercise 5.1.24 Show that every proper subspace U of \mathbb{R}^{2} is a line through the origin. [Hint: If \mathbf{d} is a nonzero vector in U, let $L=\mathbb{R} \mathbf{d}=\{r \mathbf{d} \mid r$ in $\mathbb{R}\}$ denote the line with direction vector \mathbf{d}. If \mathbf{u} is in U but not in L, argue geometrically that every vector \mathbf{v} in \mathbb{R}^{2} is a linear combination of \mathbf{u} and \mathbf{d}.]

5.1. Subspaces and Spanning ■ 453

[^0]: ${ }^{1}$ We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is an element of X is denoted $x \in X$. Two sets X and Y are called equal (written $X=Y$) if they have the same elements. If every element of X is in the set Y, we say that X is a subset of Y, and write $X \subseteq Y$. Hence $X \subseteq Y$ and $Y \subseteq X$ both hold if and only if $X=Y$.

[^1]: ${ }^{2}$ We are using set notation here. In general $\{q \mid p\}$ means the set of all objects q with property p.

[^2]: ${ }^{3}$ We are using $\mathbf{0}$ to represent the zero vector in both \mathbb{R}^{m} and \mathbb{R}^{n}. This abuse of notation is common and causes no confusion once everybody knows what is going on.

[^3]: ${ }^{4}$ The vector $\mathbf{n}=\mathbf{v} \times \mathbf{w}$ is nonzero because \mathbf{v} and \mathbf{w} are not parallel.
 ${ }^{5}$ In particular, this implies that any vector \mathbf{p} orthogonal to $\mathbf{v} \times \mathbf{w}$ must be a linear combination $\mathbf{p}=a \mathbf{v}+b \mathbf{w}$ of \mathbf{v} and \mathbf{w} for some a and b. Can you prove this directly?

